34 research outputs found

    Hollow Fiber and Nanofiber Membranes in Bioartificial Liver and Neuronal Tissue Engineering.

    Get PDF
    To date, the creation of biomimetic devices for the regeneration and repair of injured or diseased tissues and organs remains a crucial challenge in tissue engineering. Membrane technology offers advanced approaches to realize multifunctional tools with permissive environments well-controlled at molecular level for the development of functional tissues and organs. Membranes in fiber configuration with precisely controlled, tunable topography, and physical, biochemical, and mechanical cues, can direct and control the function of different kinds of cells toward the recovery from disorders and injuries. At the same time, fiber tools also provide the potential to model diseases in vitro for investigating specific biological phenomena as well as for drug testing. The purpose of this review is to present an overview of the literature concerning the development of hollow fibers and electrospun fiber membranes used in bioartificial organs, tissue engineered constructs, and in vitro bioreactors. With the aim to highlight the main biomedical applications of fiber-based systems, the first part reviews the fibers for bioartificial liver and liver tissue engineering with special attention to their multifunctional role in the long-term maintenance of specific liver functions and in driving hepatocyte differentiation. The second part reports the fiber-based systems used for neuronal tissue applications including advanced approaches for the creation of novel nerve conduits and in vitro models of brain tissue. Besides presenting recent advances and achievements, this work also delineates existing limitations and highlights emerging possibilities and future prospects in this field

    Nanofibrous membranes obtained by electrospinning for bone tissue engineering and wound dressing applications

    Get PDF
    Esta tesis doctoral se ha realizado dentro del marco de un acuerdo de co-tutela entre la Universidad de Zaragoza (Universidad de origen), la Universidad de Calabria (Universidad anfitriona) y la Facultad de Ciencias y Tecnología de la Universidad NOVA de Lisboa (FCT NOVA) (Universidad anfitriona). El trabajo de investigación se ha llevado a cabo dentro del programa de Doctorado en Ingeniería de Membranas Erasmus Mundus (EUDIME), (FPA 2011-0014), financiado por la Unión Europea. La tesis se centró principalmente en el uso de la técnica de electrohilado para producir diferentes tipos de membranas que puedan ser utilizadas en distintas aplicaciones biomédicas. Se sintetizaron y produjeron nanopartículas orgánicas e inorgánicas para ser utilizadas como rellenos o como portadores (sistema de administración de fármacos), así como membranas nanofibrosas electrohiladas. Este trabajo se llevó a cabo en el Instituto de Nanociencia de Aragón (INA), específicamente en el grupo de Nanostructured Films and Particles (NFP) bajo la supervisión de la profesora Silvia Irusta y la Dra. Gracia Mendoza. Una parte importante de la caracterización físico-química se realizó en el INA. En la Universidad de Calabria se trabajó bajo la supervisión de la Dra. Loredana de Bartolo en el Instituto de Tecnología de Membranas (ITM). Allí se utilizaron técnicas específicas tanto para la caracterización como para estudiar diferentes señales biológicas producidas por las membranas sintetizadas, bajo la supervisión. Por otro lado, la movilidad llevada a cabo en la Facultad de Ciencias y Tecnología (FCT NOVA) de la Universidade NOVA (FCT NOVA) bajo la supervisión de la profesora Ana Isabel Aguiar-Ricardo, permitió realizar una caracterización completa de dos membranas asimétricas siguiendo diferentes Normas Internacionales que establecen diferentes ensayos a realizar en apósitos primarios utilizados en heridas. El desarrollo de nuevos scaffolds cargados con proteínas morfogenéticas o antibióticos es de gran interés en el campo de la ingeniería de tejidos óseos. Scaffolds electrohilados con una microporosidad mejorada puede ser beneficioso para mejorar la viabilidad celular debido a que una alta porosidad junto a la presencia de microporos puede proporcionar un entorno tridimensional (3D) que no solamente facilita la siembra y difusión celular sino también proporciona una mejor difusión de los nutrientes y residuos a través del scaffolds. La adición de cerámica de fosfato de calcio ha sido ampliamente investigada para fabricar scaffolds altamente porosos para la ingeniería de tejidos óseos debido a que presentan una composición muy similar al hueso, incluyendo excelentes propiedades de biocompatibilidad, osteoinductivas y osteoconductoras. Partículas cargadas con proteínas morfogenéticas de hueso distribuidas homogéneamente en el scaffolds podrían asegurar una liberación continua del factor de crecimiento proporcionando de esta forma las señales bioquímicas necesarias para la reparación y regeneración ósea. Los scaffolds cargados con antibióticos pueden proporcionar una liberación sostenida del fármaco en el sitio de interés, así como el mantenimiento de propiedades osteogénicas mejoradas para la regeneración exitosa del hueso. Evitando de esta forma que se alcancen niveles de toxicidad o niveles ineficaces en la zona de interés, así como la aparición de efectos secundarios indeseados en los pacientes que provocan un rechazo a los tratamientos prolongados de fármacos por vía sistemática (vía oral e intravenosa). Otra aplicación biomédica interesante de las membranas electrohiladas es la fabricación de apósitos inteligentes eficientes para el tratamiento de heridas. Para lograr una curación rápida de la herida es necesario desarrollar membranas apropiadas con poros interconectados capaces de prevenir la deshidratación rápida y la penetración de bacterias. Para mantener un ambiente húmedo en el lecho de la herida se necesita una alta capacidad de absorción y una adecuada transmisión de vapor de agua. Además, si la membrana electrohilada presenta propiedades bactericidas facilitará el proceso de curación. El objetivo principal de esta tesis fue el desarrollo mediante electrohilado de membranas fibrosas con las características apropiadas para ser utilizadas en la ingeniería de tejidos óseos o como apósito para heridas. En los Capítulos II al V se plantean una serie de objetivos específicos con el fin de cumplir el objetivo principal. Este documento de tesis se dividió en las siguientes secciones: CAPÍTULO I, corresponde a la introducción general donde se describen los conceptos de biomateriales, scaffolds, ingeniería de tejidos y el objetivo principal de los sistemas de liberación de fármacos. Así como, la clasificación de los biomateriales y la ingeniería de tejidos según el origen de los materiales. Además se ponen de manifiesto todos los factores que deben tenerse en cuenta para desarrollar y aplicar adecuadamente los apósitos para heridas. Se mencionaron las diferentes técnicas utilizadas en la literatura haciendo énfasis en el uso de electrohilado y electropulverización para producir scaffolds o membranas para su uso en la ingeniería del tejido óseo y como apósitos para heridas. CAPÍTULO II, se enfoca en el desarrollo y mejora de andamios 3D capaces de promover una eficiente regeneración ósea junto con la liberación de antibióticos dirigidos para prevenir la colonización de bacterias. El objetivo de este trabajo fue sintetizar y caracterizar un sistema de liberación de fármacos que consiste en nanofibras electrohiladas de policaprolactona (PCL) decoradas con partículas de poli (ácido láctico-coglicólico) (PLGA) cargadas con rifampicina (RFP). Este material debe promover la reparación ósea evitando el deterioro del scaffolds provocado por una infección. Se realizó la evaluación in vitro de la capacidad bactericida del material electrohilado sintetizado contra bacterias Gram positivas (Staphylococcus aureus) y Gram negativas (Escherichia coli), así como su citocompatibilidad en cultivos 3D con osteoblastos humanos. Estos resultados se enviaron a la Revista de farmacia “International Journal of Pharmaceuitics” para su publicación en formato de artículo y está bajo revisión. CAPÍTULO III, se describe la síntesis y caracterización de membranas con estructura de núcleo-envoltura de PCL y acetato de polivinilo (PVAc) obtenidas por electrohilado. Las fibras se cargaron con nanopartículas de hidroxiapatita sintética (HAn) para aumentar la bioactividad de los materiales. Los scaffolds desarrollados se trataron con ablación láser para crear características topográficas deseadas a nivel micrométrico con el objetivo de favorecer la adhesión y crecimiento celular. Todas las membranas obtenidas presentaron una estructura de poros tridimensionalmente interconectados y el tratamiento con láser provocó un aumento en la viabilidad y densidad celular. Además, el aumento en la biocompatibilidad de los scaffolds sugiere que los microporos pequeños favorecen la adhesión y proliferación celular. Estos resultados fueron publicados en el artículo titulado “Laser-treated electrospun fibers loaded with nano-hydroxyapatite for bone tissue engineering”. Javier Aragon, Nuria Navascues, Gracia Mendoza, Silvia Irusta. International Journal of Pharmaceutics 525,112–122, 2017. DOI:10.1016/j.ijpharm.2017.04.022. CAPÍTULO IV, se refiere al desarrollo de un scaffold electrohilado compuesto por fibras con estructura de núcleo-cubierta de PCL o PCL/PVAc cargado con HAn sintética. Estas fibras se decoraron con partículas de PLGA cargadas con proteína morfogenética ósea 2 (BMP2) mediante el uso simultaneo de electrohilado coaxial y electropulverización. El objetivo de este trabajo fue evaluar las propiedades estructurales y físico-químicas así como el proceso de biodegradación de los nuevos scaffolds desarrollados y su capacidad para abordar las características arquitectónicas, bioquímicas y funcionales del tejido óseo. Para esto, se probó la bioactividad del scaffold mediante el cultivo de osteoblastos humanos sobre ellos y se monitoreo de la viabilidad celular durante 4 semanas. Se evaluó la actividad osteogénica in vitro de las células sembradas sobre los scaffolds determinando la actividad de la fosfatasa alcalina (ALP) y la expresión de osteocalcina (OCN) y osteopontina (OPN) como proteínas osteogénicas. Estos resultados fueron publicados en el artículo titulado “Polymeric electrospun scaffolds for bone morphogenetic protein 2 delivery in bone tissue engineering”. Javier Aragón, Simona Salerno, Loredana De Bartolo, Silvia Irusta and Gracia Mendoza. Journal of Colloid and Interface Science, 531 (2018) 126–137. DOI:10.1016/j.jcis.2018.07.029. El CAPÍTULO V, describe la síntesis de un apósito antimicrobiano para heridas, con una resistencia mecánica adecuada que es capaz de absorber exudados y evitar la deshidratación rápida de una herida. Se prepararon membranas asimétricas de PCL/PVAc cargadas con carvacrol (CRV) mediante el uso simultáneo de electrohilado y electropulverización. Las membranas constan de dos capas; la primera es una capa de PCL electrohilado; la segunda, una lámina de PVAc que estaría en contacto con la piel liberando a su vez el compuesto antimicrobiano. Se demostró que el uso de diferentes disolventes pueden dar lugar a la obtención de diferentes morfologías de la capa PVAc-CRV. Los valores obtenidos de elongación máxima de las membranas antes de romperse son adecuados para ser utilizados como apósitos para heridas ya que están en el mismo rango reportado de elongaciones en la piel humana. Las membranas presentan una tasa óptima de Transmisión de vapor de agua (WVTR) con valores que se encuentran en el rango requerido para mantener un buen balance entre humedad y pérdida de agua en la herida. En la primera semana, se liberó más del 60 % del CRV cargado, mientras que después de tres semanas, las membranas liberaron entre el 85 y el 100 % del CRV cargado mediante la contribución de un proceso de difusión de tipo Fickiano y la relajación delas cadenas poliméricas. Las membranas sintetizadas son candidatas potenciales para ser utilizadas como apósitos para heridas. El manuscrito que resume estos resultados se envió a la revista “Materials Science and Engineering C” y está bajo revisión (MSEC_2018_3013). CAPÍTULO VI, resume las conclusiones generales del trabajo de tesis. APÉNDICE 1, describe las principales técnicas de caracterización y los métodos para evaluar diferentes propiedades en función de las posibles aplicaciones. APÉNDICE 2, resume los artículos publicados y la participación en foros científicos durante el período de tesis. 1The current Doctoral Thesis work has been performed under a co-supervision agreement between University of Zaragoza (Home University), University of Calabria (Host University) and Faculty of Sciences and Technology of the NOVA University of Lisbon (FCT NOVA) (Host University). This research has been carried out inside the Erasmus Mundus Doctorate in Membrane Engineering program (EUDIME), (FPA 2011-0014), funded by the European Union. This thesis focused mainly on the use of the electrospinning technique to produce different kind of membranes for biomedical applications. In particular, it described the synthesis and production of inorganic and organic nanoparticles to be used as fillers or as carriers (drug delivery system) as well as the production of electrospun nanofibrous membranes. This work was carried out within the Institute of Nanoscience of Aragon (INA), specifically in the Nanostructured Films and Particles (NFP) group under the supervision of the Professor Silvia Irusta and Dr Gracia Mendoza. Also an important part of the physico-chemical characterization was done at INA.The study of different biological signals and the use of specific techniques for membrane characterization were acquired at the University of Calabria under the supervision of Dr. Loredana De Bartolo in the Institute on Membrane Technology of the National Research Council of Italy (ITM-CNR). On the other hand, the mobility carried out at the Faculty of Sciences and Technology (FCT NOVA) of Universidade NOVA (FCT NOVA) under the supervision of Professor Ana Isabel Aguiar-Ricardo, allowed a total characterization of two asymmetric membranes following different International Standards to accomplish testing for primary wound dressing.The development of novel membranes loaded with morphogenetic proteins or antibiotic are of great interest in the field of bone tissue engineering. To promote the cellular viability and extracellular matrix production, electrospun membranes with enhanced porosity and micro-scale pores could be beneficial since increased porosity and pore size can provide a three-dimensional (3D) environment that not only facilitates cell seeding/diffusion but also provides better diffusion of nutrients and waste throughout the membranes. The addition of calcium phosphate ceramics has been extensively investigated to fabricate highly porous membranes to bone tissue engineering due to their close similar composition of bone, including excellent biocompatibility, osteoinductive and osteoconductive properties. A homogeneous distribution of the bone morphogenetic protein-loaded particles along the entire membrane could be ensuring a continuous release of the growth factor to provide the necessary biochemical cues for bone repair and regeneration.Antibiotic-loaded membranes may provide drug targeted and sustained release, avoiding the long-term oral and intravenous systematic multidrug administration, which implies toxic side effects, low delivery to the target site and low patient adherence to the treatment. Therefore, membranes loaded with antibiotics can overcome the drawbacks of the traditional therapy sustaining enhanced osteogenic properties for the successful regeneration of the bone. Another interesting biomedical application of electrospun membranes is the fabrication of efficient smart dressings for the treatment of wounds. A rapid wound healing requires developing appropriate membranes with interconnected pores that allow the oxygen diffusion and transport of metabolic waste, as well as an adequate pore size to prevent rapid dehydration and bacteria penetration. A high absorption capacity and adequate water vapor transmission will be necessary to keep a moist environment in the wound bed. Besides, if the electrospun membrane has some bactericidal properties will be better for the healing process.The main goal of this thesis was the development of fibrous membranes by electrospinning with the appropriate characteristics to be used in bone tissue engineering or as wound dressing materials. To achieve this target, several specific objectives were defined, which are described in Chapters II to V.The thesis was divided in the following sections: CHAPTER I, is an introduction where the concepts of biomaterials, scaffolds and tissue engineering and the main target of drug delivery systems are described. The chapter includes the classification of biomaterials according to the origin of the materials and tissue engineering is also described as well as all the factors that must be taken into account to develop and properly apply a wound dressing are discussed. Different kind of techniques used in the literature to produce scaffolds or membranes for bone tissue engineering and wound dressings are mentioned, focusing on the use of electrospinning and electrospray to produce them. CHAPTER II, focuses on the development of enhanced 3D membranes able to promote efficient bone regeneration together with targeted antibiotic release to prevent bacteria colonization. The aim of this work was to synthesize and characterize a drug delivery system consisting of polycaprolactone (PCL) electrospun nanofibers decorated with rifampicin (RFP) loaded into poly(lactic-coglicolic acid) (PLGA) particles. This material would promote bone repair avoiding the impairment of the membrane mediated by infection. The bactericidal ability of the synthesized electrospun material was assessed In vitro against gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria, as well as its cytocompatibility in human osteoblasts 3D cultures. These results are included in the accepted article entitled “Composite scaffold obtained by electro-hydrodynamic technique for infection prevention and treatment in bone repair”. Javier Aragon, Sergio Feoli, Gracia Mendoza, Silvia Irusta. International Journal of Pharmaceutics. CHAPTER III, describes the synthesis and characterization of core-shell membranes of PCL and polyvinyl acetate (PVAc) obtained by electrospinning. The fibers were loaded with synthetic hydroxyapatite nanoparticles (HAn) to increase the bioactivity of the materials. The prepared membranes were then treated by laser ablation to create desired microscale topographical features in order to favor cell adhesion and growth. All prepared membranes exhibited a three-dimensional network structure with interconnected pores; the laser treatment has modified the structural characteristics of the membrane causing an increase the cell viability and cell density. The materials biocompatibility is affected by the structural properties of the membranes, indeed smaller micropore sizes favor cell adhesion and proliferation. These results are published in the article entitled “Laser-treated electrospun fibers loaded with nano-hydroxyapatite for bone tissue engineering”. Javier Aragon, Nuria Navascues, Gracia Mendoza, Silvia Irusta. International Journal of Pharmaceutics 525,112–122, 2017. DOI:10.1016/j.ijpharm.2017.04.022. CHAPTER IV, refers to the development of a composite electrospun membrane of PCL or PCL/PVAc core–shell fibers loaded with synthetic HAn. These fibers were decorated with bone morphogenetic protein 2 (BMP2) loaded in/into PLGA particles via simultaneous electrospraying and coaxial electrospinning. The aim of this study was to evaluate the structural and physico-chemical properties and biodegradation processes of the newly developed membranes assessing their ability to address the architectural, biochemical, and functional features of bone tissue. For this purpose, the membrane bioactivity was tested by culturing human osteoblasts on the membranes and by monitoring cell viability up to 4 weeks. The In vitro osteogenic activity of cells seeded onto the membranes was evaluated by assessing alkaline phosphatase (ALP) activity and the expression of osteogenic proteins osteocalcin (OCN) and osteopontin (OPN). These results are published in the article “Polymeric electrospun scaffolds for bone morphogenetic protein 2 delivery in bone tissue engineering”. Javier Aragón, Simona Salerno, Loredana De Bartolo, Silvia Irusta and Gracia Mendoza. Journal of Colloid and Interface Science, 531 (2018) 126–137. DOI:10.1016/j.jcis.2018.07.029. CHAPTER V, describes the synthesis of an antimicrobial wound dressing material, with appropriate mechanical resistance avoiding rapid dehydration and absorbing exudates. PCL/PVAc asymmetric membranes loaded with carvacrol (CRV) were prepared by electrospinning and electrospraying simultaneously. The membranes consist of two layers: the first is an electrospun PCL sheet, the second a PVAc sheet that would be in contact with the skin releasing the antimicrobial compound. The use of different solvents results in different morphologies for the PVAc-CRV layer. The membranes exhibit mechanical properties with strain to failure values that are in the range of human skin, being adequate to be deposited over a wound surface. The samples present Water Vapor Transmission (WVTR) values in the required range to keep good moisture balance with water loss from the wound at the optimal rate. In the first week, more than 60 % of the loaded CRV was released while after three weeks membranes released between 85 to 100 % of the loaded CRV through a Fickian diffusion and diffusion due to polymer relaxation. The synthesized membranes are potential candidates to be used for wound dressing applications. The manuscript summing up these results has been submitted to a scientific journal and is currently under review. GENERAL CONCLUSIONS, summarizes the conclusions of the thesis work. APPENDIX 1, describes the main characterization techniques and the methods to evaluate different properties according to the possible applications. APPENDIX 2, summarizes the articles published and the participation in scientific forums during the thesis period.<br /

    Double porous poly (Ɛ-caprolactone)/chitosan membrane scaffolds as niches for human mesenchymal stem cells

    Get PDF
    In this paper, we developed membrane scaffolds to mimic the biochemical and biophysical properties of human mesenchymal stem cell (hMSC) niches to help direct self-renewal and proliferation providing to cells all necessary chemical, mechanical and topographical cues. The strategy was to create three-dimensional membrane scaffolds with double porosity, able to promote the mass transfer of nutrients and to entrap cells. We developed poly (Ɛ-caprolactone) (PCL)/chitosan (CHT) blend membranes consisting of double porous morphology: (i) surface macrovoids (big pores) which could be easily accessible for hMSCs invasion and proliferation; (ii) interconnected microporous network to transfer essential nutrients, oxygen, growth factors between the macrovoids and throughout the scaffolds. We varied the mean macrovoid size, effective surface area and surface morphology by varying the PCL/CHT blend composition (100/0, 90/10, 80/20, 70/30). Membranes exhibited macrovoids connected with each other through a microporous network; macrovoids size increased by increasing the CHT wt%. Cells adhered on the surfaces of PCL/CHT 100/0 and PCL/CHT 90/10 membranes, that are characterized by a high effective surface area and small macrovoids while PCL/CHT 80/20 and PCL/CHT 70/30 membranes with large macrovoids and low effective surface area entrapped cells inside macrovoids. The scaffolds were able to create a permissive environment for hMSC adhesion and invasion promoting viability and metabolism, which are important for the maintenance of cell integrity. We found a relationship between hMSCs proliferation and oxygen uptake rate with surface mean macrovoid size and effective surface area. The macrovoids enabled the cell invasion into the membrane and the microporosity ensured an adequate diffusive mass transfer of nutrients and metabolites, which are essential for the long-term maintenance of cell viability and functions

    Overstimulation of glutamate signaling in hamster hippocampal neurons: what’s new?

    Get PDF
    It is known that ischemic complications arise from neuronal and glial dysfunctions occurring in almost all brain areas. Within some neuronal networks, an early excitatory/inhibitory circuit imbalance tends to account for premature neuronal damages especially during the initial stages of perinatal development. Interestingly, cellular conditions reported in ischemia were also detected during the different phases of hibernation cycle and above all arousal state. Hibernating animals are able to survive under these conditions without neurological damage, so their neuronal circuits present an opportunity to investigate molecular strategies involved in mammalian cell survival under unfavorable conditions. We reported a contextual alterations of both ionotropic and metabotropic Glutamatergic systems in perinatal hippocampal neurons in response to ischemic-like condition, according to their early activation during neuronal development (Giusi et al., 2009; Di Vito et a.l, 2012). In addition, an altered expression was also reported for specific PSD scaffold proteins, which regulate Glutamate receptors targeting (Al-Hallaq et al., 2007). From our preliminary results, we can suggest that specific alterations of glutamatergic receptors, which differ significantly from those reported in other rodent, could play a major role toward the correction of neuronal development aberrations linked to clinical disorders

    Artificial membranes tuning for lymphatic wall repair

    Get PDF
    Chylothorax is an uncommon form of pleural effusion, which generally occurs after cardiac surgery and almost any surgical operation in the chest. The aim of this project is to develop a bioresorbable vascular patch for lymphatic wall repair [1]. Here, we project to develop new materials (i.e. membranes) having two different levels of porosity [2]. First short tests made with Polycaprolactone (PCL) membranes and PCL was blended with different biocompatible, bioresorbable membranes. It shows that human dermal lymphatic endothelial (HDLEC) cells can bind and spread on certain membrane and not on others suggesting that the chemical structure and the morphology of the membranes is important

    Psychological treatments and psychotherapies in the neurorehabilitation of pain. Evidences and recommendations from the italian consensus conference on pain in neurorehabilitation

    Get PDF
    BACKGROUND: It is increasingly recognized that treating pain is crucial for effective care within neurological rehabilitation in the setting of the neurological rehabilitation. The Italian Consensus Conference on Pain in Neurorehabilitation was constituted with the purpose identifying best practices for us in this context. Along with drug therapies and physical interventions, psychological treatments have been proven to be some of the most valuable tools that can be used within a multidisciplinary approach for fostering a reduction in pain intensity. However, there is a need to elucidate what forms of psychotherapy could be effectively matched with the specific pathologies that are typically addressed by neurorehabilitation teams. OBJECTIVES: To extensively assess the available evidence which supports the use of psychological therapies for pain reduction in neurological diseases. METHODS: A systematic review of the studies evaluating the effect of psychotherapies on pain intensity in neurological disorders was performed through an electronic search using PUBMED, EMBASE, and the Cochrane Database of Systematic Reviews. Based on the level of evidence of the included studies, recommendations were outlined separately for the different conditions. RESULTS: The literature search yielded 2352 results and the final database included 400 articles. The overall strength of the recommendations was medium/low. The different forms of psychological interventions, including Cognitive-Behavioral Therapy, cognitive or behavioral techniques, Mindfulness, hypnosis, Acceptance and Commitment Therapy (ACT), Brief Interpersonal Therapy, virtual reality interventions, various forms of biofeedback and mirror therapy were found to be effective for pain reduction in pathologies such as musculoskeletal pain, fibromyalgia, Complex Regional Pain Syndrome, Central Post-Stroke pain, Phantom Limb Pain, pain secondary to Spinal Cord Injury, multiple sclerosis and other debilitating syndromes, diabetic neuropathy, Medically Unexplained Symptoms, migraine and headache. CONCLUSIONS: Psychological interventions and psychotherapies are safe and effective treatments that can be used within an integrated approach for patients undergoing neurological rehabilitation for pain. The different interventions can be specifically selected depending on the disease being treated. A table of evidence and recommendations from the Italian Consensus Conference on Pain in Neurorehabilitation is also provided in the final part of the pape

    What is the role of the placebo effect for pain relief in neurorehabilitation? Clinical implications from the Italian consensus conference on pain in neurorehabilitation

    Get PDF
    Background: It is increasingly acknowledged that the outcomes of medical treatments are influenced by the context of the clinical encounter through the mechanisms of the placebo effect. The phenomenon of placebo analgesia might be exploited to maximize the efficacy of neurorehabilitation treatments. Since its intensity varies across neurological disorders, the Italian Consensus Conference on Pain in Neurorehabilitation (ICCP) summarized the studies on this field to provide guidance on its use. Methods: A review of the existing reviews and meta-analyses was performed to assess the magnitude of the placebo effect in disorders that may undergo neurorehabilitation treatment. The search was performed on Pubmed using placebo, pain, and the names of neurological disorders as keywords. Methodological quality was assessed using a pre-existing checklist. Data about the magnitude of the placebo effect were extracted from the included reviews and were commented in a narrative form. Results: 11 articles were included in this review. Placebo treatments showed weak effects in central neuropathic pain (pain reduction from 0.44 to 0.66 on a 0-10 scale) and moderate effects in postherpetic neuralgia (1.16), in diabetic peripheral neuropathy (1.45), and in pain associated to HIV (1.82). Moderate effects were also found on pain due to fibromyalgia and migraine; only weak short-term effects were found in complex regional pain syndrome. Confounding variables might have influenced these results. Clinical implications: These estimates should be interpreted with caution, but underscore that the placebo effect can be exploited in neurorehabilitation programs. It is not necessary to conceal its use from the patient. Knowledge of placebo mechanisms can be used to shape the doctor-patient relationship, to reduce the use of analgesic drugs and to train the patient to become an active agent of the therapy

    What is the role of the placebo effect for pain relief in neurorehabilitation? Clinical implications from the Italian Consensus Conference on Pain in Neurorehabilitation

    Get PDF
    Background: It is increasingly acknowledged that the outcomes of medical treatments are influenced by the context of the clinical encounter through the mechanisms of the placebo effect. The phenomenon of placebo analgesia might be exploited to maximize the efficacy of neurorehabilitation treatments. Since its intensity varies across neurological disorders, the Italian Consensus Conference on Pain in Neurorehabilitation (ICCP) summarized the studies on this field to provide guidance on its use. Methods: A review of the existing reviews and meta-analyses was performed to assess the magnitude of the placebo effect in disorders that may undergo neurorehabilitation treatment. The search was performed on Pubmed using placebo, pain, and the names of neurological disorders as keywords. Methodological quality was assessed using a pre-existing checklist. Data about the magnitude of the placebo effect were extracted from the included reviews and were commented in a narrative form. Results: 11 articles were included in this review. Placebo treatments showed weak effects in central neuropathic pain (pain reduction from 0.44 to 0.66 on a 0-10 scale) and moderate effects in postherpetic neuralgia (1.16), in diabetic peripheral neuropathy (1.45), and in pain associated to HIV (1.82). Moderate effects were also found on pain due to fibromyalgia and migraine; only weak short-term effects were found in complex regional pain syndrome. Confounding variables might have influenced these results. Clinical implications: These estimates should be interpreted with caution, but underscore that the placebo effect can be exploited in neurorehabilitation programs. It is not necessary to conceal its use from the patient. Knowledge of placebo mechanisms can be used to shape the doctor-patient relationship, to reduce the use of analgesic drugs and to train the patient to become an active agent of the therapy

    Cell Adhesion

    Full text link

    Future Trends in Biomaterials and Devices for Cells and Tissues

    No full text
    Setting up physiologically relevant in vitro models requires realizing a proper hierarchical cellular structure, wherein the main tissue features are recapitulated [...
    corecore